(Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada & SBTET, Amaravati) (An ISO 9001:2015 Certified Institution) Kethanakonda (V), Ibrahimpatnam (M), Vijayawada, AMARAVATI - AP - 521456 #### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING #### COURSE OUTCOMES (COs) Course Outcomes (COs) describe what students can able to do after completion of the course. | S.No | Year-
Sem | Course
Code | Course Name | Course Outcomes | |------|--------------|----------------|--------------------------------|---| | | Jeili | Code | | After completion of the course student can able to | | | | | | CO1: Develop the Verilog HDL to design a digital circuit. | | | | | | CO2: Appreciate the analysis of finite state machine of a controlling circuit | | 1 | 1-1 | PC | RTL Simulation | CO3: Verify the functionality of the ASIC Design Flow | | | | | and Synthesis
with PLDs | CO4: Understand the Static Timing Analysis and clock issues in digital circuits | | | | | | CO5: Verify the functionality of the digital designs using PLDs. | | | | | | CO1: Compare and select ARM processor core based SOC with several features/peripherals based | | | | | | on requirements of embedded applications. CO2: Select ARM processor core peripherals based on requirements of embedded applications. | | 2 | 1-1 | PC | Microcontrollers
and | CO3: Develop small applications by utilizing the ARM processor core and DSP processor based | | | | | Programmable
Digital Signal | platform. CO4: Identify and characterize architecture of Programmable DSP Processors | | | | | Processors | CO5: Develop small applications by utilizing the ARM processor core and DSP processor based platform. | | | | | | CO1: Ability to modify the existing or new DSP architectures suitable for VLSI. | | | | | | CO2: Understand the concepts of folding and unfolding algorithms and applications. | | 3 | 1-1 | PE | VLSI signal processing | CO3: Develop Systolic Array Design Methodology and Systolic Design for Space Representations contain Delays | | 100 | EOF | | | CO4: Ability to implement fast convolution | R K COLLEGE OF ENGINEERING Kethanakonda (V), ibrahimpatnam (M), Vijayawada, AMARAVATI-521 456. (Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada & SBTET, Amaravati) (An ISO 9001:2015 Certified Institution) Kethanakonda (V), Ibrahimpatnam (M), Vijayawada, AMARAVATI - AP - 521456 | CO5: Low power design aspects of processors for signal processing and wireless applications. CO1: Write an embedded C application of moderate complexity. CO2: Develop Object Oriented Programming and generic programming techniques. CO3: Develop object Oriented Programming and generic programming techniques. CO3: Develop and analyze algorithms in C++. CO4: Able to write the needs of Overloading and types of Inheritance CO5: Differentiate interpreted languages from compiled languages CO1: Understand research problem formulation. CO2: Analyze research ethics CO4: it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular. CO5: Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits. CO1: Identify, formulate, solve and implement problems in signal processing, communication Systems etc using RTL design tools. CO2: Use EDA tools like Cadence, Mentor Graphics and Xilinx. CO1: Install, configure and utilize tool sets for developing applications based on ARM processor core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development boards. CO3: Developing the overall personality. | | 1 | 1 | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 4 I-I PE Programming Languages for Embedded Systems CO3: Develop Object Oriented Programming and generic programming techniques. CO3: Develop and analyze algorithms in C++. CO4: Able to write the needs of Overloading and types of Inheritance CO5: Differentiate interpreted languages from compiled languages CO1: Understand research problem formulation. CO2: Analyze research ethics CO4: it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular. CO5: Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits. CO1: Identify, formulate, solve and implement problems in signal processing. CO2: Use EDA tools like Cadence, Mentor Graphics and Xilinx. CO3: Install, configure and utilize tool sets for developing applications based on ARM processor core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development. CO3: Developing the overall personality. | | | | | algorithms. | | 4 I-I PE Programming Languages for Embedded Systems CO3: Develop Object Oriented Programming and generic programming techniques. CO3: Develop and analyze algorithms in C++. CO4: Able to write the needs of Overloading and types of Inheritance CO5: Differentiate interpreted languages from compiled languages CO1: Understand research problem formulation. CO2: Analyze research ethics CO4: it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular. CO5: Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits. CO1: Identify, formulate, solve and implement problems in signal processing. CO2: Use EDA tools like Cadence, Mentor Graphics and Xilinx. CO3: Install, configure and utilize tool sets for developing applications based on ARM processor core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development. CO3: Developing the overall personality. | | | | | CO5: Low power design aspects of processors for | | COI: Write an embedded C application of moderate complexity. CO2: Develop Object Oriented Programming and generic programming techniques. CO3: Develop and analyze algorithms in C++. CO4: Able to write the needs of Overloading and types of Inheritance CO5: Differentiate interpreted languages from compiled languages. CO1: Understand research problem formulation. CO2: Analyze research related information CO3: Follow research ethics CO4: it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular. CO5: Understand research problem formulation. CO2: Analyze research related information CO3: Follow research ethics CO4: it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular. CO5: Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits. CO1: Identify, formulate, solve and implement problems in signal processing, communication Systems etc using RTL design tools. CO2: Use EDA tools like Cadence, Mentor Graphics and Xilinx. CO1: Install, configure and utilize tool sets for developing applications based on ARM processor core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development boards. CO3: Developing the overall personality. | | | | | signal processing and wireless applications. | | Programming Languages for Embedded Systems | | | | | CO1: Write an embedded C application of | | CO2: Develop Object Oriented Programming and generic programming techniques. CO3: Develop and analyze algorithms in C++. CO4: Able to write the needs of Overloading and types of Inheritance CO5: Differentiate interpreted languages from compiled languages CO1: Understand research problem formulation. CO2: Analyze research related information CO3: Follow research ethics CO4: it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular. CO5: Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits. CO1: Identify, formulate, solve and implement problems in signal processing, communication Systems etc using RTL design tools. CO2: Use EDA tools like Cadence, Mentor Graphics and Xillinx. CO1: Install, configure and utilize tool sets for developing applications based on ARM processor core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development boards. CO3: Developing the overall personality. | | | | | moderate complexity. | | Programming Languages for Embedded Systems Code | | | | | | | 4 I-I PE Programming Languages for Embedded Systems CO3: Develop and analyze algorithms in C++. CO4: Able to write the needs of Overloading and types of Inheritance CO5: Differentiate interpreted languages from compiled languages (CO1: Understand research problem formulation. CO2: Analyze research related information CO3: Follow research ethics CO4: it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular. CO5: Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits. CO1: Identify, formulate, solve and implement problems in signal processing, communication Systems etc using RTL design tools. CO2: Use EDA tools like Cadence, Mentor Graphics and Xilinx. CO1: Install, configure and utilize tool sets for developing applications based on ARM processor core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development boards. CO1: Learn the importance of Human values. CO3: Developing the overall personality. | | | | | generic programming techniques | | CO4: Able to write the needs of Overloading and types of Inheritance CO5: Differentiate interpreted languages from compiled languages CO1: Understand research problem formulation. CO2: Analyze research related information CO3: Follow research ethics CO4: it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular. CO5: Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits. CO1: Identify, formulate, solve and implement problems in signal processing, communication Systems etc using RTL design tools. CO2: Use EDA tools like Cadence, Mentor Graphics and Xilinx. CO1: Install, configure and utilize tool sets for developing applications based on ARM processor core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development. CO2: Learn the importance of Human values. CO3: Developing the overall personality. | | | | Programming | CO3: Develop and analyze algorithms in C++ | | Systems CO5: Differentiate interpreted languages from compiled languages CO1: Understand research problem formulation. CO2: Analyze research related information CO3: Follow research ethics CO4: it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular. CO5: Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits. CO1: Identify, formulate, solve and implement problems in signal processing, communication Systems etc using RTL design tools. CO2: Use EDA tools like Cadence, Mentor Graphics and Xilinx. CO1: Install, configure and utilize tool sets for developing applications based on ARM processor core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development. CO2: Learn the importance of Human values. CO3: Developing the overall personality. | 4 | 1-1 | PE | Languages for | CO4: Able to write the needs of Overloading | | Systems CO5: Differentiate interpreted languages from compiled languages CO1: Understand research problem formulation. CO2: Analyze research related information CO3: Follow research ethics CO4: it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular. CO5: Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits. CO1: Identify, formulate, solve and implement problems in signal processing, communication Systems etc using RTL design tools. CO2: Use EDA tools like Cadence, Mentor Graphics and Xilinx. CO3: Install, configure and utilize tool sets for developing applications based on ARM processor core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development. CO3: Developing the overall personality. | | | | Embedded | and types of Inheritance | | COD: Understand research problem formulation. CO2: Analyze research ethics CO4: it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular. CO5: Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits. CO1: Identify, formulate, solve and implement problems in signal processing, communication Systems etc using RTL design tools. CO2: Use EDA tools like Cadence, Mentor Graphics and Xilinx. CO1: Install, configure and utilize tool sets for developing applications based on ARM processor core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development. CO3: Developing the overall personality. | | | * | Systems | CO5: Differentiate interpreted languages from | | CO1: Understand research problem formulation. CO2: Analyze research related information CO3: Follow research ethics CO4: it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular. CO5: Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits. CO1: Identify, formulate, solve and implement problems in signal processing, communication Systems etc using RTL design tools. CO2: Use EDA tools like Cadence, Mentor Graphics and Xillinx. CO1: Install, configure and utilize tool sets for developing applications based on ARM processor core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development. CO3: Developing the overall personality. | | | | | compiled languages | | CO2: Analyze research related information CO3: Follow research ethics CO4: it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular. CO5: Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits. CO1: Identify, formulate, solve and implement problems in signal processing, communication Systems etc using RTL design tools. CO2: Use EDA tools like Cadence, Mentor Graphics and Xilinx. CO1: Install, configure and utilize tool sets for developing applications based on ARM processor core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development boards. CO3: Developing the overall personality. | | | | | | | CO3: Follow research ethics CO4: it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular. CO5: Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits. CO1: Identify, formulate, solve and implement problems in signal processing, communication Systems etc using RTL design tools. CO2: Use EDA tools like Cadence, Mentor Graphics and Xilinx. CO1: Install, configure and utilize tool sets for developing applications based on ARM processor core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development boards. CO3: Doveloping the overall personality. | | | | | CO2: Analyza research related informulation. | | CO4: it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular. CO5: Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits. CO1: Identify, formulate, solve and implement problems in signal processing, communication Systems etc using RTL design tools. CO2: Use EDA tools like Cadence, Mentor Graphics and Xilinx. CO1: Install, configure and utilize tool sets for developing applications based on ARM processor core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development boards. Value Education (Audit Course - Value in processor than the importance of Human values. CO3: Developing the overall personality. | | | | | CO3: Follow research ethics | | Research methodology and IPR 6 I-I Lab 1 RTL Simulation and Synthesis with PLDs Lab 7 I-I Lab 2 Research methodology and IPR RTL Simulation and Synthesis with PLDs Lab Programmable Digital Signal Processors Lab Value Education (Audit Course - 8 I-I Aud 1 Research methodology and IPR ROS: Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits. CO1: Identify, formulate, solve and implement problems in signal processing, communication Systems etc using RTL design tools. CO2: Use EDA tools like Cadence, Mentor Graphics and Xilinx. CO1: Install, configure and utilize tool sets for developing applications based on ARM processor core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development. CO3: Developing the overall personality. | | | | | | | Research methodology and IPR CO5: Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits. CO1: Identify, formulate, solve and implement problems in signal processing, communication Systems etc using RTL design tools. CO2: Use EDA tools like Cadence, Mentor Graphics and Xilinx. CO1: Install, configure and utilize tool sets for developing applications based on ARM processor core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development. CO2: Learn the importance of Human values. CO3: Developing the overall personality. | | | | | information about Intelled I B | | 5 I-I methodology and IPR 6 I-I Lab 1 RTL Simulation and Synthesis with PLDs Lab 7 I-I Lab 2 Richection methodology and IPR RTL Simulation and Synthesis with PLDs Lab Microcontrollers and Programmable Digital Signal Processors Lab Value Education (Audit Course - | | | | | be promoted amount of the | | methodology and IPR methodology and IPR methodology and IPR CO5: Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits. CO1: Identify, formulate, solve and implement problems in signal processing, communication Systems etc using RTL design tools. CO2: Use EDA tools like Cadence, Mentor Graphics and Xilinx. CO1: Install, configure and utilize tool sets for developing applications based on ARM processor core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development boards. Value Education (Audit Course - Educatio | | | | Research | opgingering in partial among students in general & | | incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits. CO1: Identify, formulate, solve and implement problems in signal processing, communication Systems etc using RTL design tools. CO2: Use EDA tools like Cadence, Mentor Graphics and Xilinx. CO1: Install, configure and utilize tool sets for developing applications based on ARM processor core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development boards. Value Education (Audit Course - Note of the provides and inventor for further research work and investment in R protection provides and investment in R & D, which leads to creation of new and better products, and in turn brings and investment in R & D, which leads to creation of new and better products, and in turn brings and investment in R & D, which leads to creation of new and better products, and in turn brings and investment in R & D, which leads to creation of new and better products, and in turn brings and investment in R & D, which leads to creation of new and better products, and in turn brings and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits. CO1: Identify, formulate, solve and implement problems in signal processing, communication Systems etc using RTL design tools. CO2: Use EDA tools like Cadence, Mentor developing applications based on ARM processor core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development. CO1: Knowledge of Self-development. CO2: Learn the importance of Human values. | 5 | 1-1 | | | COE Understand the UDD | | 6 I-I Lab 1 RTL Simulation and Synthesis with PLDs Lab Microcontrollers and Programmable Digital Signal Processors Lab Value Education (Audit Course - 8 I-I Aud 1 RTL Simulation and Synthesis with PLDs Lab Graphics and Xilinx. CO1: Identify, formulate, solve and implement problems in signal processing, communication Systems etc using RTL design tools. CO2: Use EDA tools like Cadence, Mentor developing applications based on ARM processor core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development boards. CO1: Knowledge of Self-development. CO2: Learn the importance of Human values. CO3: Developing the overall personality. | | | | | inconting to investigate the investigation provides an | | of new and better products, and in turn brings about, economic growth and social benefits. CO1: Identify, formulate, solve and implement problems in signal processing, communication Systems etc using RTL design tools. CO2: Use EDA tools like Cadence, Mentor Graphics and Xilinx. CO1: Install, configure and utilize tool sets for developing applications based on ARM processor core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development boards. Value Education (Audit Course - 8 I-I Aud 1 Of new and better products, and in turn brings about, economic growth and social benefits. CO1: Identify, formulate, solve and implement problems in signal processing, communication Systems etc using RTL design tools. CO2: Use EDA tools like Cadence, Mentor developing applications based on ARM processor core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development. CO1: Knowledge of Self-development. CO2: Learn the importance of Human values. CO3: Developing the overall personality. | | | | and mix | and investment is D. C. D. turther research work | | 6 I-I Lab 1 RTL Simulation and Synthesis with PLDs Lab Microcontrollers and Processors Lab 7 I-I Lab 2 RTL Simulation and Synthesis with PLDs Lab Microcontrollers and Programmable Digital Signal Processors Lab Value Education (Audit Course - 8 I-I Aud 1 Aud 1 RTL Simulation systems etc using RTL design tools. CO2: Use EDA tools like Cadence, Mentor Graphics and Xilinx. CO1: Install, configure and utilize tool sets for developing applications based on ARM processor core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development boards. CO3: Developing the overall personality. | | | | | and investment in R & D, which leads to creation | | CO1: Identify, formulate, solve and implement problems in signal processing, communication Systems etc using RTL design tools. CO2: Use EDA tools like Cadence, Mentor Graphics and Xilinx. CO1: Install, configure and utilize tool sets for developing applications based on ARM processor core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development boards. Value Education (Audit Course - 8 I-I Aud 1 CO1: Identify, formulate, solve and implement problems in signal processing, communication Systems etc using RTL design tools. CO2: Use EDA tools like Cadence, Mentor developing applications based on ARM processor core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development. CO3: Developing the overall personality. | | | | | of new and better products, and in turn brings | | From the state of | | | | | about, economic growth and social benefits. | | Systems etc using RTL design tools. CO2: Use EDA tools like Cadence, Mentor Graphics and Xilinx. CO1: Install, configure and utilize tool sets for developing applications based on ARM processor core SOC and DSP processor. Programmable Digital Signal Processors Lab Value Education (Audit Course - Value Install, configure and utilize tool sets for developing applications based on ARM processor core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development boards. CO3: Learn the importance of Human values. CO3: Developing the overall personality. | | | | | COI: Identify, formulate, solve and implement | | 7 I-I Lab 2 Microcontrollers and Processors Lab Value Education (Audit Course - Value Internal Processors Lab Aud 1 Aud 1 Systems etc using RTL design tools. CO2: Use EDA tools like Cadence, Mentor Graphics and Xilinx. CO1: Install, configure and utilize tool sets for developing applications based on ARM processor core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development boards. CO3: Learn the importance of Human values. CO3: Developing the overall personality. | 6 | 1.1 | lab 1 | DTI Cimalati | problems in signal processing, communication | | with PLDs Lab Graphics and Xilinx. CO1: Install, configure and utilize tool sets for developing applications based on ARM processor core SOC and DSP processor. Programmable Digital Signal Processors Lab Value Education (Audit Course - Nicrocontrollers and Microcontrollers developing applications based on ARM processor core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development boards. CO1: Knowledge of Self-development. CO2: Learn the importance of Human values. CO3: Developing the overall personality. | | 1 | Lau | | Systems etc using RTL design tools. | | 7 I-I Lab 2 Microcontrollers and Programmable Digital Signal Processors Lab Value Education (Audit Course - Aud 1 CO1: Install, configure and utilize tool sets for developing applications based on ARM processor core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development boards. CO1: Install, configure and utilize tool sets for developing applications based on ARM processor core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development boards. CO3: Learn the importance of Human values. CO3: Developing the overall personality. | | | | | CO2: Use EDA tools like Cadence, Mentor | | 7 I-I Lab 2 Programmable Digital Signal Processors Lab Value Education (Audit Course - 8 I-I Aud 1 Microcontrollers and Programmable Digital Signal Processors Lab Cortex M3 and DSP development boards. CO1: Knowledge of Self-development. CO2: Learn the importance of Human values. CO3: Developing applications based on ARM processor core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development. CO2: Learn the importance of Human values. CO3: Developing the overall personality. | | | | With PLDs Lab | | | 7 I-I Lab 2 Programmable Digital Signal Processors Lab Value Education (Audit Course - 8 I-I Aud 1 Microcontrollers and Programmable Digital Signal Processors Lab Cortex M3 and DSP development boards. CO1: Knowledge of Self-development. CO2: Learn the importance of Human values. CO3: Developing applications based on ARM processor core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development. CO2: Learn the importance of Human values. CO3: Developing the overall personality. | | | | | COI: Install, configure and utilize tool sets for | | 7 I-I Lab 2 Programmable Digital Signal Processors Lab Value Education (Audit Course - 8 I-I Aud 1 Core SOC and DSP processor. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development boards. CO1: Knowledge of Self-development. CO2: Learn the importance of Human values. CO3: Developing the overall personality. | | | | | developing applications based on ARM processor | | Digital Signal Processors Lab Value Education (Audit Course - Aud 1 Programmable Digital Signal Processors Lab Value Education (Audit Course - CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development boards. CO1: Knowledge of Self-development. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development boards. CO2: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development boards. CO3: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development boards. CO3: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development. CO3: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development boards. CO3: Develop prototype codes using commonly available on and off chip peripherals on the Cortex M3 and DSP development. CO3: Developing the overall personality. | 7 | 1.1 | lab o | | core SOC and DSP processor. | | Processors Lab Value Education (Audit Course - 8 I-I Aud 1 Aud 1 Aud 1 Aud 1 Available on and off chip peripherals on the Cortex M3 and DSP development boards. CO1: Knowledge of Self-development. CO2: Learn the importance of Human values. CO3: Developing the overall personality. | / | 1-1 | Lab 2 | | CO2: Develop prototype codes using commonly | | Value Education (Audit Course - 8 I-I Aud 1 Cortex M3 and DSP development boards. CO1: Knowledge of Self-development. CO2: Learn the importance of Human values. CO3: Developing the overall personality. | | | | | available on and off chip peripherals on the | | 8 I-I Aud 1 CO1: Knowledge of Self-development. CO2: Learn the importance of Human values. CO3: Developing the overall personality. | | | | | Cortex M3 and DSP development boards. | | 8 I-I Aud 1 (Audit Course - CO2: Learn the importance of Human values. CO3: Developing the overall personality. | | | | | CO1: Knowledge of Self-development. | | CO3: Developing the overall personality. | 0 | | | (Audit Course - | CO2: Learn the importance of Human values | | COL: Appropriate the trade official | 8 | The same of sa | Aud 1 | | CO3: Developing the overall personality | | Appreciate the trade-offs involved in analog | | EGE | E | | CO1: Appreciate the trade-offs involved in analog | GINEERING * PRINCIPAL H K COLLEGE OF ENGINEERING Kethanakonda (V), Ibrahimpatnam (M), Vijayawada, AMARAVATI-521 456. (Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada & SBTET, Amaravati (An ISO 9001:2015 Certified Institution) Kethanakonda (V), Ibrahimpatnam (M), Vijayawada, AMARAVATI - AP - 521456 | | 1 | | T | | |----|------|------|-------------------------|----------------------------------------------------| | | | | | integrated circuit design. | | | | | | CO2: Understand and appreciate the importance | | | | | | of noise and distortion in analog circuits. | | | | | | CO3: Analyze complex engineering problems | | | | | | critically in the domain of analog IC design for | | | | | | conducting research. | | 9 | 1-11 | PC | Analog and | CO4: Demonstrate advanced knowledge in Static | | | | | Digital CMOS | and dynamic characteristics of CMOS, Alternative | | | | | VLSI Design | CMOS Logics, Estimation of Delay and Power, | | | | | 1 201 2 031811 | Adders Design. | | | | | | | | | | | | CO5: Solve engineering problems for feasible and | | | | | | optimal solutions in the core area of digital ICs. | | | | | | CO1: Illustrate real time programming concepts. | | | | | | CO2: Apply RTOS functions to implement | | | | | Real Time | embedded applications | | | | | | CO3: Analyze the issues in real time operating | | | | | | systems | | 10 | 1-11 | PC | | CO4: Understand fundamentals of design | | | | | Operating | consideration for embedded applications | | | | | Systems | CO5: To Understand Applications Control by RT | | | | | | Linux System | | | | | | CO1: Select architecture and design | | | | | | semiconductor memory circuits and subsystems. | | | | | | CO2: Identify various fault models, modes and | | | 1-11 | PE | Memory
Architectures | mechanisms in semiconductor memories and their | | | | | | testing procedures. | | | | | | CO3: Identify various fault models in | | 11 | | | | semiconductor memories | | | | | | | | | | | | testing procedures. | | | | | | | | | | | | CO5: Know how the state-of-the-art memory | | | | | | chip design | | | 1-11 | PE | Communication | CO1: Select a particular serial bus suitable for a | | | | | | particular application. | | 12 | | | | CO2: Develop APIs for configuration, reading | | 12 | 1-11 | PE | Buses and | and writing data onto serial bus. | | | | | Interfaces | CO3: Design and develop peripherals that can be | | | | EOFE | | interfaced to desired serial bus. | | | 1 | EAS | | CO4: Develop USB Transfer Types and | | | 1/0/ | 1 | | | PHNCKAL R K COLLEGE OF ENGINEERING Kethanakonda (V), Ibrahimpatnam (M), Vijayawada, AMARAVATI-521 458 (Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada & SBTET, Amaravati) (An ISO 9001:2015 Certified Institution) Kethanakonda (V), Ibrahimpatnam (M), Vijayawada, AMARAVATI - AP - 521456 | | | | | Descriptor to a condition to | |-----------------|------|-------|-----------------|--| | | | | | Descriptor types and contents | | | | | | CO5: Data streaming Serial Communication | | | | | | Protocol - Serial Front Panel Data Port(SFPDP) | | | | | | CO1: Analyze VI Characteristics NMOS and PMOS | | | | | | Devices. | | | | | | CO2: Analyze Voltage transfer characteristics of | | | | | Analog and | CMOS inverter. | | 13 | 1-11 | Lab 1 | Digital CMOS | CO3: Demonstrate transient and ac analysis of | | | | | VLSI Design Lab | CMOS inverter. | | | | | | CO4: Calculate small signal voltage gain of CS | | | | | | amplifier. | | | | | | CO5: Design the layout of a minimum size | | | | | | inverter. | | | | | | CO1: Analyze basic concepts of operating system | | | | | | and their structures. | | | | | | CO2: Analyze various issues related to inter | | | | | | process communication like process scheduling, | | | | | | resource management and deadlocks. | | | | | | CO3: Interpret the issues and challenges of | | 14 | 1-11 | Lab 2 | Real Time | memory management. | | | | | Operating | CO4: Synthesize the concept of I/O management, | | | | | Systems Lab | file system implementation and problems related | | | | | | to security and protection. | | | | | | CO1: Understand of contemporary / emerging | | | | | | technology for various processes and systems. | | | | | | CO2: Share knowledge effectively in oral and | | 15 | 1-11 | MP | Mini Project | written form and formulate documents. | | | | | Stress | CO1: Develop healthy mind in a healthy body | | 16 | 1-11 | Aud 2 | Management by | thus improving social health also. | | | | | Yoga | CO2: Improve efficiency. | | | | | | CO1: About the Hardware-Software Code sign | | | | | | Methodology. | | | | | | CO2: How to select a target architecture and how | | | | | | a prototype is built and how emulation of a | | | | | | prototype is done. | | | | | Hardware | CO3: Brief view about compilation technologies | | 17 | 11-1 | PE | Software co- | and compiler development environment. | | | - | E OF | design | CO4: About Design Specification and Verification | | | 1/5 | EN | | CO5: Understand the importance of system level | | 16 System lever | | | | | PRINCIPAL R K COLLEGE OF ENGINEERING Kethanakonda (V), Ibrahimpatnam (M), Vijayawada, AMARAVATI-521 456. (Approved by AICTE, New Delhi & Affiliated to JNTUK, Kakinada & SBTET, Amaravati) (An ISO 9001:2015 Certified Institution) Kethanakonda (V), Ibrahimpatnam (M), Vijayawada, AMARAVATI - AP - 521456 | | | | | • | |----|-------|--------------|--|--| | | | | | specification languages and multi-language co-
simulation. | | 18 | 11-1 | OE | Operations
Research | CO1: Students should able to apply the dynamic programming to solve problems of discreet and continuous variables. CO2: Students should able to apply the Formulation of a LPP CO3: Students should able to apply the concept of non-linear programming CO4: Students should able to carry out sensitivity analysis CO5: Student should able to model the real | | | | | | world problem and simulate it. | | | | | | previously gained and applied to an in-depth study and execution of new technical problem. CO2: Capable to select from different methodologies, methods and forms of analysis to produce a suitable research design, and justify | | 19 | 11-11 | Dissertation | Project /
Dissertation
Phase- II | their design. CO3: Ability to present the finding of their technical solution in a written report. CO4: Presenting the work in International / National conference or reputed journals | HOD ECE. PRINCIPAL PRINCIPAL R K COLLEGE OF ENGINEERING Kethanakonda (V), Ibrahimpatnam (M), Vijayawada, AMARAVATI-521 456.