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 Abstract: In this paper we introduce the concepts of vague topological ring, vague topological field, 

vague topological module and vague topological vector space. We investigate some of their 

properties. 
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1. Introduction 

       The concept of fuzzy set was introduced by Zadeh [14] in 1965. The idea of fuzzy set is 

welcome because it handles uncertainty and vagueness which cantorian set could not address. The 

membership of an element to a fuzzy set is a single value between zero and one. The theory of fuzzy 

topology was introduced by C.L.Chang [5] in 1967. Several researches were conducted on the 

generalisations of the notions of fuzzy sets and fuzzy topology. The theory of vague sets was 

proposed by Gaw and Buchere [7] as an extension of fuzzy set theory and vague sets are regarded as 

a special case of content – dependent fuzzy sets. The idea of vague sets is that the membership of 

every element can be divided into two aspects including supporting and opposing. The theory of 

vague topology was introduced by Mariapresenti.L and Arockia Rani.I [11]. 

       Now, we introduce the concepts of vague topological rings, vague topological modules, vague 

topological fields and vague topological vector spaces. 

2. Preliminaries 

Definition 2.1: [7] A vague set � in the universal of discourse � is characterized by two membership 

functions given by: A truth membership function ��: � → [0,1] and � false membership function           

��: � → [0,1], where ���� is a lower bound of the grade of membership of � derived from the 

“evidence for �”, and ���� is a lower bound on the negation of � derived from the “evidence against 

�” and ���� + ���� ≤ 1.Thus, the grade of membership of � in the vague set � is bounded by 

subinterval [����, 1 − ����]  of [0,1]. This indicates that, if the actual grade of membership of � is 

µ�� then, ���� ≤ ��� ≤ 1 − ����. Now, the vague set � is written as � = ��, [����, 1 −
����]�/� ∈ ��, where the interval [����, 1 − ����]  is called the value of � in the vague set � and 

denoted by ����. 
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Definition 2.2: [7] Let � and � be two vague sets of the form � = ��, [����, 1 − ����]�� and                     

� = ��, [����, 1 − ����]�� then, 

1. �  � if and only if ���� �  ≤  ���� and 1 −  ����  ≤  1 −  ���� for all � ∈ �. 

2. � =  � if and only if �  � and �  �. 

3. ��  =  � �, [����, 1 −  ����]��. 

4. �  � =  �� ![ ���� �, ����] , � ![1 −  ����, 1 −  ����]�. 
5. � ∪  � =  ��#�[ ����, ����] , �#�[1 −  ���� ,1 −  ����]�. 
Definition 2.3: [11] A Vague Topology (VT) on � is a family $ of Vague Sets (VS) in � satisfying 

the following axioms 

 1. 0, 1 ∈ $. 

 2. %&  %' ∈ $ for any %&, %' ∈  $ 
 3. ∪ %( ∈ $ for any family � %(  / ∈ )�   $ 

           In this case the pair  �, $� is called a Vague Topological Space (VTS) and any Vague Set in 

$ is known as a Vague Open Set (VOS) in �. The complement �� of a VOS A in a VTS �, $� is 
called a Vague Closed Set (VCS) in �. 

Definition 2.4: [3] An abelian group � is called a Topological Additive Group if a Topology is 

defined on the set � and following conditions are satisfied: 

1. The mapping #, *�  →  # +  * of the Topological Space  � ×  � on to the Topological space 

� is Continuous. 

2. Additive inversion continuity condition: The mapping #  →  −#� of the topological space � 

onto itself is continuous. 

Remark: Let � be an abelian group then � is a Topological abelian group in the discrete or in the 

indiscrete topology. 

Example 2.5: Let  % =  �0, 1� and let $ =  � ,, �0�, �1�, %� is a discrete topology on G. Let � =
 �0�, � =  �1� and define � +  � =  � −  ��  ∪  � −  ��  

 

 

 

 

 

 

Table 1 

So, %, $, +� is a topological additive group.   

+ Φ A B G 

Φ Φ A B G 

A A Φ G B 

B B G Φ A 

G G B A Φ 
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Definition 2.6: A ring - is called a topological ring if a topology is defined on the set - and the 

additive group of the ring - is a topological group in this topology and the following condition is 

satisfied: 

       The mapping #, *�  →  #. * of the topological space - ×  - to the topological space - is 

continuous. 

Example 2.7: Let � =  �0, 1, 2�  =  /0 and let $ =  �,, �0�, �1�, �2�, �0, 1�, �1, 2�, �0, 2�, �� is a 

discrete topology on X. We denote � =  �0�, � =  �1�, 1 =  �2�, 2 =  �0, 1�, 3 =  �1, 2� and - =
 �0, 2�  and define � +  � =  � −  ��  ∪  � −  �� and �. � =  � ∩ �. 

Addition Table: 

 

 

 

 

 

 

 

 

 

 

Table 2 

From the table 2 it is clear that, additive identity is , and every set is its own inverse. 

Multiplication Table: 

 

 

 

 

 

 

 

 

 

 

Table 3 

+ , � � 1 2 3 - � 
, , � � 1 2 3 - � 
� � , 2 - � � 1 3 
� � 2 , 3 � 1 � - 
1 1 - 3 , � � � 2 
2 2 � � � , - 3 1 
3 3 � 1 � - , 2 � 
- - 1 � � 3 2 , � 
� � 3 - 2 1 � � , 

. , � � 1 2 3 - � 
, , , , , , , , , 
� , � , , � , � � 
� , , � , � � , � 
1 , , , 1 , 1 1 1 
2 , � � , 2 � � 2 
3 , , � 1 � 3 1 3 
- , � , 1 � 1 - - 
� , � � 1 2 3 - � 
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From the table 3 it is clear that, additive identity is �. 

Intersection satisfies associative law.  

Let �, �, 1 ∈  $, then   

A ∩ B +  C�  =   A ∩ [B −  C�  ∪ C −  B�]  
                             =  [A ∩ B −  C�]  ∪  [A ∩ C −  B�] 
                             =  [A ∩  B ∩ X −  C�]  ∪  [A ∩  C ∩  X −  B�]. 
A ∩  B�  + A ∩  C�  =  [A ∩  B�  −  A ∩  C�]  ∪  [A ∩  C�  − A ∩  B�] 
                                          =   [A ∩  B�  −  C�]  ∪  [A ∩  C� −   B�] 
                                          =  [A ∩  B ∩  X −  C�]  ∪  [A ∩  C ∩ X −  B�]. 
So A ∩ B +  C�  =  A ∩  B�  +  A ∩  C�. 
Therefore  �, $, +, . � is a topological ring.  

Definition 2.8: A topological module is a module over a topological ring such that scalar 

multiplication and addition are continuous. 

Example 2.9: Let  � =  �0, 1, 2�  =  /0  be a ring then 9 =   $ =
 � ,, �0�, �1�, �2�, �0, 1�, �1, 2�, �0, 2�, �� is a discrete topology on �. Clearly 9 is a topological - – 

module. 

Definition 2.10: Let  � be an indiscrete space. The only continuous maps are constant maps from  

� →  - and hence the ring - can be identified with the field -. 

Example 2.11: Let � be an arbitrary set and $ =  �,, �� be an indiscrete topology on �. It can be 

observed from the following tables $, +, . � is a topological field. 

Define � +  � =  � −  ��  ∪ � −  �� and �. � =  � ∩  � 

+ , � 
, , � 
� � , 

   Table4 

 

 

 

 

Table 5 

Example 2.12: Let � =  /' =  �0,1� be a Galoi’s field under addition modulo 2 and multiplication 

modulo 2 operations are as follows: 

 

. , � 
, , , 
� , � 
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Table 6 

 

 

 

 

Table 7 

Clearly �, +', .' � is a field. 

If we take $ =  �,, �� be an indiscrete topology on � then $, +', .' � is a topological field. 

Definition 2.13: A linear vector space � with a topology $ on � is called a topological vector space 

if addition is a continuous function from � ×  � into � and multiplication by scalars is a continuous 

function from : ×  � into �. 

Example 2.14: Let � =  /' =  �0, 1� be a vector space over the field  : =  �0, 1�  =  /'  and $ =
 � ,, �, �, � �, where � =  �0�, � =  �1�, be the discrete topology on �. From the example 2.5, 

clearly$, +') ia an abelian additive topological group. 

Suppose 0, 1 ∈ /'  =  :, then clearly  

       0,�  =  0, 0��  =  0, 0��  =  0, 0��  =  0, 
                                         1,�  =  , ,       1��  =  �,         1��  =  �,        1��  =  �. 

Therefore $ is a topological vector space. 

Example 2.15: Let � =  /0  =  �0, 1, 2� be a vector space over the field  =  �0, 1, 2�  =  /0 . Then 

the set  $ in the example 2.7 is a topological vector space. 

 3. Vague Topological Rings 

Definition3.1: A topological ring - is said to be a vague topological ring if it satisfies the following 

conditions: 

1. �;� ∪  ��   ≤  �#� � �;��, �;�� �  

2. �;� ∩  ��   ≤  � ! � �;��, �;�� � 
3. �;� +  ��   ≤  �#� � �;��, �;�� � 

4. �;���   ≤  � ! � �;��, �;�� �. 
Example 3.2: Let - be any ring and endow - with the indiscrete topology. Then, $ =  � ,, � � is a 

topological ring.  

+' 0 1 
0 0 1 
1 1 0 

.' 0 1 
0 0 0 
1 0 1 
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Clearly, the vague set � =  � , < 0, 0 =, � < 1, 1 =� is a vague topological ring. 

Example3.3: Let � =  �0, 1�,  $ =  � ,, �0�, �1�, ��  =   � ,, �, �, ��. Then $, +, . � is a topological 

ring. The vague set - on �, - =  〈Φ, [0, 0.2]〉〈�, [0.1, 0.2]〉, 〈�, [0.2, 0.2]〉, 〈�, [0.2, 0.2]〉� is a vague 

topological ring. 

Example 3.4: Let  � =  �0, 1, 2� and  $ =  � ,, �0�, �1�, �2�, �0, 1�, �1, 2�, �0, 2�, �� 

              =   � ,, �, �, 1, 2, 3, -, ��. 
Then, $, +0, .0 � is a topological ring. 

The vague set - = 〈 �, [�;��,1 −  �;��] 〉 on � defined by 

 �;��    =  0  �  � =  ,               
   =  0.1  � � =  � 
    =  0.2  � � =  � 

                         =  0.3  � � =  1, 2, 3, -, �   
1 − �;��  =  0  �  � =  , 
                      =  0.2  � � =  � 
                       =  0.3  � � =  � 

                                          =  0. 4  � � =  1, 2, 3, -, � 
is a vague topological ring. 

Lemma 3.5:  If - is a vague topological ring of a ring � then for all  ∈  � , we have �;−��  =
 �;��. 

Theorem 3.6: Let - be a vague set of a ring  � then - is a vague topological ring of a ring � if and 

only if - satisfies the following conditions: 

1. �;� −  ��   ≤  �#� ��;��, �;��� 

2. �;��  ≤   �;−�� 

3. �;� ∩ ��   ≤  � ! ��;��, �;���. 
Proof: Let - be a vague topological ring of a ring �. Then we have  

          �;� −  ��   ≤  �#� ��;��, �;−��� 
                               =  �#� ��;��, �;���  

Similarly, we can prove that, 1 −  �;� −  ��   ≤   �#� �1 − �;��, 1 −  �;���. It follows that, 

�;� −  ��   ≤  �#� � �;��, �;���. 
And by the definition, we get �;��  ≤   �;−��,  �;� ∩ ��   ≤  � ! ��;��, �;���. 

         Conversely suppose that, - is a vague set of a ring �.  Also we have �;��  ≤   �;−��. 

Then clearly �;� +  �� =  �; B� – −��D 

                                         ≤  �#� � �;��, �;−��� 
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                                          =  �#���;��, �;��� 
Similarly, we can prove that 1 −  �;� +  ��   ≤  �#� �1 −  �;��, 1 − �;���. It follows that, 

�;� +  ��   ≤  �#� ��;��, �;���. 

Hence, - is a vague topological ring of a ring �. 

Theorem 3.7: Let - and E are vague topological rings of a ring � then - ∩  E is a vague topological 

ring of �.  

Proof: Let - and E are vague topological rings of a ring �.  

Then we have, �;∩F� − �� =   � ! ��;� − ��, �F� − ���  

         ≤  � ! � �#�� �;��, �;���, �#�� �F��, �F����  

             =  �#� �� ! ��;�� , �F���, � ! ��;�� , �F���� 

                                             = max ��;∩F��, �;∩F��� 

Similarly, we can prove that, 1 − �;∩F� − �� ≤  �#��1 − �;∩F��, 1 − �;∩F���. It follows that, 

�;∩F� − �� ≤  �#���;∩F��, �;∩F���.  

Clearly, �;��  ≤   �;−��. 

And �;∩F��� = � !��;���, �F����  

                         ≤  � ! � �#�� �;��, �;���, �#�� �F��, �F����  

                         =  �#� �� ! ��;�� , �F���, � ! ��;�� , �F���� 

                         =  �#���;∩F��, �;∩F��� 

Similarly, we can prove that 1 − �;∩F��� ≤  �#��1 − �;∩F��, 1 − �;∩F���. It follows that, 

�;∩F��� ≤  �#���;∩F��, �;∩F���. Therefore, - ∩ E is a vague topological ring. 

Definition 3.8: Let � be a mapping from a set � into a set J. Let � be a vague set in J. Then the 

inverse image of �, �K&�� is the vague set in � by �LMN���� = ��O���P for all � ∈  �. 

Definition 3.9: Let � be a mapping from a set � into set J. Let � be a vague set in �. Then the 

image of �, � �� is the vague set in J by �L��Q� =  RST���U�/U ∈ �K&Q��, if �K&Q� ≠ ∅ 

                           =  [0, 0], otherwise. 

Theorem 3.10: Let - and E are vague topological rings and � be a homomorphism from - into E. 

Let � be a vague topological ring of E, then the inverse image �K&�� is a vague topological ring of 

-. 

Proof: Let - and E are vague topological rings.  

Then for all 1, X ∈ -,  we have    �LMN�� 1 −  X�  =  ���1 −  X��  
                                                               = ��  �1� –  � X��   

                                     ≤ �#�����1�� , ���X��� 
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                                         =  �#� ��LMN��1�, �LMN��X�� 
Similarly, we can prove that, �LMN��1X� ≤ �#�Y�LMN��1�, �LMN��X�Z. Hence, �K&�� is a 

vague topological ring of -. 

Theorem 3.11: Let - and E be vague topological rings and � be a homomorphism from - into E. Let 

� be a vague topological ring of -, then the image ��� is a vague topological ring of E. 

Proof: Let - and E be vague topological rings. Let [, � ∈  E such that 

             �L;�[�  =    RST � �; [ � / 1 ∈ �K&[� � and  �L;���  =    RST ��; �� / X ∈ �K&���. 
Then, �L;� [ −  ��  =  RST��; \ � / \ ∈ �K&[ −  ��� 

                                      �#���;1� , �;X�� 

                          =   �#� ��L��S�, �L��]��. 
Thus the image ��� of � is a vague topological ring of E. 

4. Vague Topological Modules 

Definition 4.1: Let - be a ring and 9 be a topological -- module. Then the set E of 9 is a vague 

topological module if it satisfies the following conditions: 

1. �̂ � +  ��  ≤  �#� ��̂ ��, �̂ ��� for all �, � ∈ 9  

2. �̂ _��  ≤  �̂ �� �`_ #aa � ∈ 9 #!b �`_ #aa _ ∈ - 

3. �̂ ,�  =  0, 0�. 
Example 4.2: Let  $, 9, +� be a topological module in the example 2.7. 

The vague set E = 〈 �, [�^��,1 −  �̂ ��] 〉 on � defined by 

  �^��  =  0  �  � =  ,   
             =  0.2  � � =  � 

                =  0.3  � � =  �   
                                     =  0.4  � � =  1, 2, 3, -, �      

 1 − �̂ ��  =  0  �  � =  , 
                     =  0.3  � � =  � 
                     =  0.4  � � =  � 

                                        =  0. 5  � � =  1, 2, 3, -, � 
is a vague topological module 

Theorem 4.3: The intersection of a family of vague topological modules is also a vague topological 

module. 

Proof: Let  �9(  /  ∈ d� be a family of vague topological modules and 9 =   9(. Then   

�e� + �� =  (∈f
(gL��eh  � +  ��� 
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               ≤ (∈f
(gL� �#�  �eh��, �eh���� 

    =  �#� ��e��, �e���. 
and  

              �e_� �  =  (∈f
^ij��eh_��� 

          ≤  (∈f
^ij��#��eh��� 

                                     =  �#��(∈f
^ij �e��� 

                  = �e��. 
Hence, the intersection of a family of vague topological modules is also a vague topological module. 

Theorem 4.4: Let 9& and 9' be two vague topological ring modules over the ring - and � be a 

linear transform of 9& and 9'. Let 9 be a vague topological module of 9', then the inverse image  

�K&9� is a vague topological module of 9&. 

Proof: Let �, � ∈ 9& and #, * ∈ -, then 

  �LMNe�#� +  *��  =  �e�#� +  *��� 
                                               =  �e#���  + *����   

                                                                                         ≤ �#���e���� , �e����� 
                                                             =  �#� ��LMNe� ��, �LMNe����. 

Hence, �K&9� is a vague topological ring of 9&. 

Theorem 4.5: Let 9& and 9' be two vague topological ring modules over the ring - and � be a 

linear transform of 9& and 9'. Let 9 be a vague topological module of 9&, then the inverse image  

�9� is a vague topological module of 9'. 

Proof: Let k, l ∈ 9'. If either �K&k� or �K&l� is empty then the inequality theorem      

�Le�#� +  *��  �#� ��Le� ��, �Le���� is satisfied for all �, � ∈ 9 and for all #, * ∈ -. 

Suppose that, neither �K&k� nor �K&l� is empty. 

Let �m ∈ �K&k�, �m ∈ �K&l� then 

�e�m� =�∈LMNn�
^ij �e��, 

                    �e�m� =�∈LMNo�
^ij �e��. 

Then  �Le�#k +  *l� =p∈LMNqnrso�
^ij �e_� where _ ∈ �K&� + �� 

                                       ≤ �#�Y�eO��m�P, �eO��m�PZ                                                                        
                     =  �#� ��Le�k�, �Le�l�� 

Thus, the image �9� is a vague topological module of 9'. 
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5. Vague Topological Fields 

Definition 5.1: A topological ring : is said to be a vague topological field if it satisfies the following 

conditions: 

1. �t� ∪  ��   ≤  �#� ��t��, �t���  

2. �t� ∩  ��   ≤  � ! ��t��, �t���  

3. �t� +  ��   ≤  �#� ��t��, �t��� 

4. �t���   ≤  � ! ��t��, �t���. 
Example 5.2: Let � be any arbitary set and $ =  �,, �� be an indecrete topological space, then, 

: =  $, +, . � is a topological field. Clearly, the vague set � =  � , < 0, 0 =, � < 1, 1 =� is a 

vague topological field. 

Example 5.3: Let  � =  �0, 1� be a field,  $ =  � ,, �0�, �1�, ��  =   � ,, �, �, ��. Then, $, +, . � is a 

topological field. The vague set - on �, - = 〈Φ, [0, 0.2]〉〈�, [0.1, 0.2]〉, 〈�, [0.2, 0.2]〉 , 〈�, [0.2, 0.2]〉�  

is a vague topological field. 

Lemma 5.4:If : is a vague topological field of a field � then  

1. � ∈ �, we have �t− ��   =   �t��, 

2. � ∈ �, we have  �t�K&� = �t��. 
Proof:  By definition, we have �t− �� ≤ �t�� for all ∈ � ........ (1) 

Also, �t�� = �t−−��� ≤ �t−�� ................... (2) 

From (1) and (2), �t− �� = �t�� 

Similarly, �t�K&� ≤ �t�� for all ∈ � ........ (3) 

Also, �t��  =  �t�K&�K&� ≤ �K&� ................... (4) 

From (3) and (4), �t− ��   =   �t��. 
Theorem 5.5: Let : be a vague topological subset of a field �. Then : is a vague topological field 

of X if and only if : satisfies the following conditions: 

1.  �t� −  ��   ≤  �#� ��t��, �t��� for  all �, � ∈ :;  

2.  �t� ∩ �K&�   ≤  � ! ��t��, �t��� for all �, � ∈ :. 

Proof: Let : be a vague topological subset of a field �. Then we have  

�t� −  ��   ≤  max ��t��, �t−�� 

                                                                         =  �#� ��t��, �t���. 
Similarly, we can prove that, �t� ∩ �K&�   ≤  � ! ��t��, �t��� for all                                                            

�, � ∈ :. 

Theorem 5.6: The intersection of a family of vague topological fields is a vague topological field. 

Proof: Let �:(/  ∈ d� be a family of vague topological fields and : = ⋂:(. 
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    Then, �t� − �� =(∈f
v(g Y�th� − ��Z                     

                                 ≤(∈f
v(g w�#�Y�th��, �th��Zx   

                                 =  �#� ��t��, �t���. 
Similarly, we can prove that, �t� ∩ �K& �   ≤  � ! ��t��, �t���. 

Hence, the intersection of a family of vague topological fields is also vague topological field. 

6. Vague Topological Vector Space 

Definition 6.1: Let E be a topological vector space over a field :. Then the set E  is a vague 

topological vector space if it satisfies the following conditions: 

1. �F� +  �� �#� ��F��, �F���; 

2. �F#�� ≤ �F�� for all # ∈ :; 

3.    �F0�  =  0, 0�. 
Example 6.2: Let �, $� be a topological vector space in the example 2.15.The vague set             

E = ��, [�F��, 1 − �̂ ��]� on � defined by 

        �F��  =  0  �  � =  ,           
          =  0.3  � � =  � 
          =  0.4  � � =  � 

                             =  0.5  � � =  1, 2, 3, -, � 
         1 − �F��  =  0  �  � =  , 
                              =  0.4  � � =  � 
                               =  0.5  � � =  � 

                                                  =  0. 6 � � =  1, 2, 3, -, � 
is a vague topological vector space. 

Example 6.3: For a Vague Topological Vector space over the field /': 

� = /' ×  /'  =  �0,1� × �0,1� =  �0,0�, 0,1�, 1,0�, 1,1�� 
� =  �z, #, *, {� where z = 0,0�, # = 0,1�, * = 1,0�, { = 1,1� 

     = �,, �z�, �#�, �*�, �{�, �z, #�, �z, *�, �z, {�, �#, *�, �*, {�, �{, #�, �z, #, *�, �z, *, {�, �z, {, #�, �#, *, {�, 
�z, #, *, {�� 

For our convenience we take  

� = �z�, � = �#�, 1 = �*�, X = �{�, | = �z, #�, : = �z, *�, % = �z, {�, 2 = �#, *�, 3 = �*, {�, 
 - = �1, ��, E = �z, #, *�, $ = �z, *, {�, [ = �z, {, #�, � = �#, *, {�, � = �z, #, *, {� 

 The Addition Table is as given below � + � =  � –  �� [ � –  �� 
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+ , } ~ � � � � � � � � � � � � � 
, , } ~ � � � � � � � � � � � � � 
} } , � � � ~ � � � � � � � � � � 
~ ~ � , � � } � � � � � � � � � � 
� � � � , � � } � ~ � � � � � � � 
� � � � � , � � } � � ~ � � � � � 
� � ~ } � � , � � � � � � � � � � 
� � � � } � � , � � � � ~ � � � � 
� � � � � } � � , � � � � � ~ � � 
� � � � ~ � � � � , � � } � � � � 
� � � � � � � � � � , � � } � ~ � 
� � � � � ~ � � � � � , � � } � � 
� � � � � � � ~ � } � � , � � � � 
� � � � � � � � � � } � � , � � ~ 
� � � � � � � � ~ � � } � � , � � 
� � � � � � � � � � ~ � � � � , } 
� � � � � � � � � � � � � ~ � } , 

Additive identity elements is  Φ 

Every set has its own inverse. 

Inverse of � is � only. Similarly, for the other elements also. 

Multiplication Table is as given below � . � = � ∩  � 
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. , } ~ � � � � � � � � � � � � � 
, , , , , , , , , , , , , , , , , 
} , } , , , } } } , , , } } } , } 
~ , , ~ , , ~ , , ~ , ~ ~ , ~ ~ ~ 
� , , , � , , � � � � , , � , � � 
� , , , , � , , � , � � , � � � � 
� , } ~ , , } } } ~ , ~ � ~ � ~ � 
� , } , � , } � } � � , � � } � � 
� , } , , , } } � , � � } } � � � 
� , , ~ � , ~ � , � � ~ � � ~ � � 
� , , , � � , � � � � � � � � � � 
� , , ~ , � ~ , � ~ � � ~ , � � � 
� , } ~ � , � � } � � ~ � � � � � 
� , } , � � } � � � � � � � � � � 
� , } ~ , � � } � ~ � � � � � � � 
� , , ~ � � ~ � � � � � � � � � � 
� , } ~ � � � � � � � � � � � � � 

From the above two tables it is clear that,    +, . � is a Topological vector space. It is represented 

by �. Now, the vague set E = �, [�F��, �F��]� on � defined by  

�F��  =  0  � � =   , 
                  =  0.6 `�ℎz_� Rz     

1 − �̂ ��  =  0  � � =  , 
                      =  0.7 `�ℎz_� Rz 

Then E is a Vague Topological Vector space. 

Example 6.4: Let � =  
��

〈&r�r ��  〉  = �0, 1, k, 1 + k� be a set. Define addition modulo 2 and 

multiplication modulo 2 on � as follows: 
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Addition Table: 

Multiplication Table: 

Then �, +',×'� is a Field. 

If we take � =  �0, 1, k, 1 + k } 

From the Example of Vague Topological Vector space, we can consider  

=  �,, �0�, �1�, {k}, {1+k},{0,1},{0, k}, {0,1+k},{1, k},{1,1+k},{k,1+k},{0,1, 

k},{0,1,1+k},{0, k,1+k},{1, k,1+k},{0,1, k,1+k} 

For our convenience we take 

 =  �,, �, �, 1, X, |, :, %, 2, 3, -, E, $, [, �, ��,where � = �0�, � = �1�, 1 = �k�, X = �1 + k�, 

| = �0,1�, : = �0, k�, % =  �0,1 + k �, 2 = �1, k�, 3 = �1,1 + k�, - = �k, 1 + k�, E = �0,1, k�, 

$ = �0,1,1 + k�,  [ = �0, k, 1 + k�, � = �1, k ,1 + k�, � =  �0,1, k, 1 + k�. 

We can write the tables for addition and multiplication tables as in the 6.3example of Topological 

vector space. 

Hence,  , +, . � is a Topolocial Vector space. 

We can define Vague Toplogical vector space as follows now the vague set E = ��, [�F��, �F��]� 

on  defined by  

+2 0 1 α 1 + k 

0 0 1 α 1 + k 

1 1 0 1 + k α 

α α 1 + k 0 1 

1 + k 1 + k α 1 0 

×2 0 1 k 1 + k 

0 0 0 0 0 

1 0 1 α 1+α 

α 0 1 1 + α α 

1 + α 0 1+α 1 α 
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�F��  =  0  � � =   , 
                    =  0.5 `�ℎz_� Rz     

1 − �F��  =  0  � � =  , 
                        =  0.6 `�ℎz_� Rz 

Theorem 6.5: If E is a vague topological vector space of a vector space � over a field :, then 

�F���  =  �F�� for all 0 ≠  � ∈ :. 

Proof: For all � ∈ E, we have �F��� ≤  �F��  for  some  0 ≠  � ∈ :. 

Also, we have �F�� = �F���K&� ≤ �F���. That is, �F��� = �F��. 

Theorem 6.6: Let � be a topological vector space over a field : and E is a vague set of �. Then E 

vague E is a vague topological vector space of  � if and only if       �F#� + * ��   ≤
 �#� ��F��, �F��� for all �, � ∈ E, #, * ∈ :. 

Proof: Suppose that S is a vague topological vector space of  X. We have �F#��   =  �F�� and 

�F*��   =  �F��. Then we have �F#� + * �� ≤ �#� ��F��, �F���. Conversely suppose that if 

# =  * =  1, we have �F� +  �� ≤ �#� ��F��, �F��� and  if * =  0 then �F#� � ≤ �F��. So, 

E is a vague topological vector space of �. 

Theorem 6.7: Let - and E are vague topological vector spaces of vector space � over a field :. 

Then we have - ∩ E  is a vague topological vector space of �. 

Proof: Let - and E be vague topological vector spaces of vector space � over a field :.   

Then we have,  �;∩F� +  � �  =  � ! ��;� +  ��, �F� + ��� 

   ≤  � !��#���;��, �;���, �#���F��, �F����  

                                                   =  �#��� !��;��, �F���, � ! ��;��, �F���� 

=  �#� ��;∩F ��, �;∩F ��� 
and 

�;∩F �� �  =   � ! ��;�� � , �F���� 
                             =  � ! �� ![�;� � , �F��]� 

So - E is a vague topological vector space. 

Conclusion:  

We investigated vague topological rings, vague topological fields, vague topological modules and 

vague topological vector spaces. It is hoped that these concepts will rise to the notations like vague 

normed linear spaces, vague Hilbert spaces and vague Banach spaces etc. 
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