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Abstract: In this paper, latest concepts minimal signed edge unidominating function of a 
graph and upper signed edge unidomination number of a cycle is found and In addition, we 
determine the minimal signed edge unidominating functions with maximum weight for these 
graphs. The results obtained are illustrated.  
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Introduction: Minimal SuDF and upper signed unidomination number was defined and 
studied by Aruna and results on upper signed unidomination number of some corona product 
graphs are discussed. In this chapter, latest concepts minimal signed edge unidominating 
function and upper SeUDN of a graph are introduced. In addition, we determine the minimal 
signed edge unidominating functions with maximum weight for these graphs. The results 
obtained are illustrated. 
 
Minimal Signed Edge Unidominating Function (MSEUDF) 
In this section the concepts of minimal signed edge unidominating function  
(MSEUDF) and upper SeUDN are defined as follows: 
 
Definition:   Let   𝐺(𝑉, 𝐸)  be a graph and   ƒ and 𝑔 be functions from 𝐸 to {−1,1}.   

We say that 𝑔 < ƒ if (𝑒) ≤ ƒ(𝑒) ∀ 𝑒 ∈ 𝐸, with strict inequality for at least one edge 𝑒. 
 
Definition: Let 𝐺(𝑉, 𝐸) be a connected graph. 

A SEUDF ƒ: 𝐸 → {−1,1} is called a MSEUDF if for  all 𝑔 < ƒ , 𝑔 is not a SEUDF. 
 
Definition: The upper   SeUDN   of   a   graph   𝐺(𝑉, 𝐸)   is   defined   as 

max {ƒ(𝐸)⁄ ƒ is a MSEUDF}. 
 
It is denoted by Γ′(𝐺). 
Upper SeUDN of a Cycle 
 

Here we discuss MSEUDF of a cycle and find upper SeUDN of this  graph in various cases. 
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Theorem: The upper SeUDN of a cycle 𝐶𝑛, 𝑛 ≥ 3 is 

 
 
Proof: Let 𝐶𝑛 be the given graph. We have the following cases. 
Case 1: Let 𝑛 ≡ 0(𝑚𝑜𝑑3). 

Define a function ƒ: 𝐸 → {−1,1} 𝑏𝑦 

 
for all i = 1,2, … , 𝑛. 
 
This function is similar to the function defined in Case 1 of known Theorem, it is shown that 
ƒ is a SEUDF. 
Now we check for the minimality of ƒ. 
 

Define a function 𝑔: 𝐸 → {−1,1} 𝑏𝑦 

 
This is the case when a SEUDF fails an edge 𝑒1 ∈ 𝐶𝑛 where (𝑒1) = −1 because it is in the 
neighborhood of the edge. 
Thus 𝑔 is not a SEUDF. 
Since 𝑔 is defined arbitrarily, there is no 𝑔 < ƒ such that 𝑔 is a SEUDF. 
As a result, ƒ is a MSEUDF. The only MSEUDF is ƒ because assigning the functional values 1, −1 
to the edges of 𝐶𝑛 in any further way does not construct ƒ any longer a SEUDF. 
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For example, the functional values of MSEUDF ƒ defined in this Case are given at every 
edge of the graph 𝐶15. 

 
 

Now max {ƒ(𝐸)⁄ƒ is a MSEUDF} = 
𝑛

3
, because ƒ is the only one MSEUDF. 

Therefore Γ′(𝐶𝑛) = 
𝑛

3

  
𝑛 ≡ 0(𝑚𝑜𝑑 3). 

 

Case 2: Let 𝑛 ≡ 1(𝑚𝑜𝑑 3). 
 

Define a function ƒ ∶ 𝐸 → {−1, 1} 𝑏𝑦 
 

                     ƒ(𝑒 ) =    
−1 ƒor i ≡ 0(𝑚𝑜𝑑 3), 

                                       1                           𝑜𝑡ℎ𝑒𝑟𝑤i𝑠𝑒 
for all i = 1,2, … , 𝑛. 
 
This function is equal to the function defined in Case 2 of Known Theorem, it is shown that ƒ 
is a SEUDF. 
Now we check for the minimality of ƒ. 
 

Define a function 𝑔: 𝐸 → {−1,1} 𝑏𝑦 
 

        (𝑒 ) =     
−1                     ƒ𝑜𝑟 i ≡ 0(𝑚𝑜𝑑 3) 𝑎𝑛𝑑 i = 2, 

                         1                                   𝑜𝑡ℎ𝑒𝑟𝑤is . 
 

Suppose i = 2. Then 𝑔 (𝑒2) = −1. 
 

∑      𝑔 (𝑒′) = 𝑔(𝑒1) + 𝑔(𝑒2) + 𝑔(𝑒3) = 1 + (−1) + (−1) = −1 ≠ 1. 
𝑒′∈N[𝑒2] 

 
This is the case when a SEUDF fails an edge 𝑒2 ∈ 𝐶𝑛 where (𝑒2) = −1 because it is in the 

neighborhood of the edge. 

Therefore 𝑔 is not a SEUDF. 

Since 𝑔 is defined arbitrarily, there is no 𝑔 < ƒ such that 𝑔 is a SEUDF. 

As a result, ƒ is a MSEUDF. The only MSEUDF is ƒ because assigning the functional values 1, −1 
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to the edges of 𝐶𝑛 in any further way does not construct ƒ any longer a SEUDF. 

 
(Here there are 

𝑛−1
 groups by functional values sum as 1). 

Thus ƒ(𝐸) = 
𝑛+2

3
. 

 
For example, the functional values of MSEUDF ƒ defined in this Case are given at every 
edge of the graph 𝐶13. 
 

 

Now max {ƒ(𝐸)⁄ƒ is a MSEUDF} = 
𝑛+2

3
, because ƒ is the only one MSEUDF. 

 

Therefore Γ′(𝐶𝑛) = 
𝑛+2

3
 when 𝑛 ≡ 1(𝑚𝑜𝑑 3). 

 

Case 3: Let 𝑛 ≡ 2(𝑚𝑜𝑑 3). 
 
Define a function ƒ: 𝐸 → {−1,1} by 
 

                    ƒ(𝑒 ) = {
−1 ƒ𝑜𝑟 i ≡ 0(𝑚𝑜𝑑 3) , 

                                       1   𝑜𝑡ℎ𝑒𝑟𝑤i𝑠𝑒 
for all i = 1,2, … , 𝑛.  

This function is same as the function defined in Case 3 of Theorem 3.4.1 in Chapter 3  and it is 

shown that ƒ is a SEUDF. 

Now we check for the minimality of ƒ. 

 

Define a function 𝑔: 𝐸 → {−1,1} 𝑏𝑦 
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i         (𝑒 ) = {
−1 ƒ𝑜𝑟 i ≡ 0(𝑚𝑜𝑑 3) 𝑎𝑛𝑑 i = 2, 

                        1 𝑜𝑡ℎ𝑒𝑟𝑤i . 
Suppose i = 2. Then (𝑒2) = −1. 
 

∑ 𝑔(𝑒′) = 𝑔(𝑒1) + 𝑔(𝑒2) + 𝑔(𝑒3) = 1 + (−1) + (−1) = −1 
𝑒′∈N[𝑒2] 

                       ≠ 1. 
This is the case when a SEUDF fails an edge 𝑒2 ∈ 𝐶𝑛 where (𝑒2) = −1 because it is in the 

neighborhood of the edge. 

Thus 𝑔 is not a SEUDF. 

Since 𝑔 is defined arbitrarily, there is no 𝑔 < ƒ such that 𝑔 is a SEUDF. 

As a result, ƒ is a MSEUDF. The only MSEUDF is ƒ because assigning the functional values −1, 1 

to the edges of 𝐶𝑛 in any further way does not construct ƒ any longer a SEUDF. 

 
For example, the functional values of MSEUDF ƒ defined in this Case are given at every 
edge of the graph 𝐶17. 

 

                                     Г′  (𝐶 ) = 7 
                                       𝑠𝑢 17 
 

Now max {ƒ(𝐸)⁄ƒ is a MSEUDF} = 
𝑛+4

3
, because ƒ is the only one MSEUDF. 
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Therefore Γ′su(𝐶𝑛) = 
𝑛+4

3
 when 𝑛 ≡ 2(𝑚𝑜𝑑 3). 

Combining all three cases completes the proof of the theorem. 

Thus the upper SeUDN of a cycle 𝐶𝑛, 𝑛 ≥ 3 is 

 

 
 
Conclusion: In this paper the authors have studied minimal signed edge unidominating 
function, upper signed edge unidomination number of a cycle. This works throws light on 
further study of some other standard graphs such as complete graph etc.  
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